Kernels for sequentially ordered data

نویسندگان

  • Franz J. Király
  • Harald Oberhauser
چکیده

We present a novel framework for kernel learning with sequential data of any kind, such as time series, sequences of graphs, or strings. Our approach is based on signature features which can be seen as an ordered variant of sample (cross-)moments; it allows to obtain a “sequentialized” version of any static kernel. The sequential kernels are efficiently computable for discrete sequences and are shown to approximate a continuous moment form in a sampling sense. A number of known kernels for sequences arise as “sequentializations” of suitable static kernels: string kernels may be obtained as a special case, and alignment kernels are closely related up to a modification that resolves their open non-definiteness issue. Our experiments indicate that our signaturebased sequential kernel framework may be a promising approach to learning with sequential data, such as time series, that allows to avoid extensive manual pre-processing. [email protected] [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernels for Semi-Structured Data

Semi-structured data such as XML and HTML is attracting considerable attention. It is important to develop various kinds of data mining techniques that can handle semistructured data. In this paper, we discuss applications of kernel methods for semistructured data. We model semi-structured data by labeled ordered trees, and present kernels for classifying labeled ordered trees based on their ta...

متن کامل

Optimally Local Dense Conditions for the Existence of Solutions for Vector Equilibrium Problems

In this paper, by using C-sequentially sign property for bifunctions, we provide sufficient conditions that ensure the existence of solutions of some vector equilibrium problems in Hausdorff topological vector spaces which ordered by a cone. The conditions which we consider are not imposed on the whole domain of the operators involved, but just on a locally segment-dense subset of the domain.

متن کامل

On a Family of Decomposable Kernels on Sequences

In many applications data is naturally presented in terms of orderings of some basic elements or symbols. Reasoning about such data requires a notion of similarity capable of handling sequences of different lengths. In this paper we describe a family of Mercer kernel functions for such sequentially structured data. The family is characterized by a decomposable structure in terms of symbol-level...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

Semantic Role Recognition Using Kernels on Weighted Marked Ordered Labeled Trees

We present a method for recognizing semantic role arguments using a kernel on weighted marked ordered labeled trees (the WMOLT kernel). We extend the kernels on marked ordered labeled trees (Kazama and Torisawa, 2005) so that the mark can be weighted according to its importance. We improve the accuracy by giving more weights on subtrees that contain the predicate and the argument nodes with thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.08169  شماره 

صفحات  -

تاریخ انتشار 2016